Roger Access Control System

Instrukcja instalacji kontrolera MC16 v1.1

Oprogramowanie firmowe: 1.1.2 i wyższe

Wersja sprzętowa: v1.1 Wersia dokumentu: Rev. A

CE

Dokument dotyczy wszystkich urządzeń bazujących na module MC16 v1.1

Niniejszy dokument zawiera minimum informacji wymaganych do skonfigurowania, podłączenia i zamontowania urządzenia. Pełny opis funkcjonalności oraz parametrów konfiguracyjnych kontrolera jest dostępny w instrukcji obsługi urządzenia dostępnej na stronie producenta www.roger.pl.

WSTEP

MC16 jest wielofunkcyjnym modułem elektronicznym dedykowanym do wykorzystania w systemie RACS 5. W zależności od wgranego oprogramowania oraz licencji moduł może pełnić rolę kontrolera dostępu, ekspandera WE/WY, interfejsu komunikacyjnego, kontrolera windy, kontrolera automatyki i innych urządzeń systemu. Moduł oferowany jest w wersji surowej, bez oprogramowania oraz licencji (MC16-RAW) lub w wersji fabrycznie przygotowanej do pracy w jednym z możliwych wariantów wykorzystania modułu. Zarówno moduł surowy jak i moduł fabrycznie zaprogramowany może być przeprogramowany we własnym zakresie i wykorzystany do innych funkcji w systemie RACS 5. Zmiana przeznaczenia modułu wymaga wgrania nowego oprogramowania firmowego FW i opcjonalnie zakupu właściwej licencji. Rozszerzanie możliwości modułu w ramach tego samego typu urządzenia nie wymaga zmiany oprogramowania a jedynie rozszerzenia licencji.

LICENCJA NA OPROGRAMOWANIE

Fabrycznie nowy kontroler jest wyposażony w plik licencji License.INI wgrany na karcie pamięci FLASH. Plik licencyjny zawiera informacje określające rodzaj oprogramowania (np. kontroler dostępu MC16-8, kontroler windy MC16-EVC-64), jego możliwości funkcjonalne (np. ilość obsługiwanych przejść w kontrolerze dostępu, ilość obsługiwanych pięter w kontrolerze windy) oraz adres MAC modułu dla którego licencja została wystawiona. Licencja na oprogramowanie jest ważna tylko na numer MAC modułu który został wyszczególniony w licencji.

Uwaga: Jakiekolwiek zmiany w treści pliku licencyjnego powoduje uszkodzenie licencji. Zaleca się wykonanie kopii zawartości pliku karty pamięci.

KONFIGURACJA MODUŁU

Wykorzystanie modułu w systemie RACS 5 wymaga wykonania tzw. Konfiguracji niskopoziomowej oraz tzw. Konfiguracji wysokopoziomowej. Konfiguracja niskopoziomowa jest wykonywana z poziomu programu RogerVDM i ma na celu skonfigurowanie właściwości płyty modułu w szczególności jej adresu IP, klucza szyfrującego komunikację, topologii linii wejściowych, polaryzacji linii wyjściowych oraz wielu innych parametrów które nie dotyczą logiki działania systemu a jedynie właściwości modułu MC16. W celu wykonania Konfiguracji niskopoziomowej kontroler musi być przełączony do tzw. Trybu serwisowego.

Uwaga: Zaleca się wykonanie konfiguracji niskopoziomowej przed podłączeniem go do docelowej sieci komputerowej.

Konfiguracja wysokopoziomowa jest wykonywana z poziomu programu VISO i ma na celu skonfigurowanie logiki realizowanej przez kontroler w ramach systemu RACS 5 a w szczególności logiki kontroli dostępu oraz automatyki budynkowej. Konfiguracja wysokopoziomowa jest wykonywana po Konfiguracji niskopoziomowej gdy kontroler znajduje się w Trybie normalnym.

Uwaga: Po wykonaniu jakichkolwiek zmian w Konfiguracji niskopoziomowej modułu MC16 należy go ponownie skonfigurować z poziomu programu VISO.

USTAWIENIE ADRESU

Zarówno w celu Konfiguracji niskopoziomowej jak i Konfiguracji wysokopoziomowej kontroler musi być podłączony do komputera za pośrednictwem interfejsu sieciowego Ethernet. Połączenie z komputerem może być realizowane przez bezpośrednie połączenie kablowe pomiędzy komputerem a modułem lub przez sieć LAN. Adres IP

modułu ustawia się z trakcie Konfiguracji niskopoziomowej. Fabrycznie nowy kontroler posiada adres IP=192.168.0.213.

Przed podłączeniem kontrolera dostępu do docelowej sieci Ethernet należy nadać mu odpowiedni adres IP oraz ustawić Hasło komunikacyjne. Programowanie pozostałych parametrów konfigurujących urządzenia jest opcjonalne i zależy do indywidualnych wymagań systemu.

Ze wzgledu na to że w praktyce Konfiguracja niskopoziomowa jest realizowana czesto z innego komputera niż zarządzanie systemem RACS 5 istnieje możliwość ustawienia alternatywnego tzw. Serwisowego adresu IP który bedzie używany przez kontroler wyłącznie w trakcie Konfiguracji niskopoziomowej. Serwisowy adres IP jest przechowywany w pliku IP.INI znajdującym się na karcie pamięci FLASH. W przypadku gdy na karcie pamięci nie ma pliku IP.INI lub gdy nie zawiera on wymaganych wpisów kontroler w Trybie serwisowym używa tego samego adresu co w Trybie normalnym.

Przykład wpisu w pliku IP.INI deklarującego adres serwisowy:

IPA =192.168.0.80 IPM=255.255.255.0 IPG=192.168.0.1

WGRYWANIE OPROGRAMOWANIA

Nowe oprogramowanie firmowe można wgrać do modułu z poziomu programu RogerVDM w trakcie Konfiguracji niskopoziomowej lub bezpośrednio z karty FLASH bez konieczności połaczenia z komputerem. W komplecie z kontrolerem dostarczany jest czytnik kart FLASH który można użyć do edycji zawartości karty pamięci.

Procedura Wgrywania Oprogramowania z Karty Pamieci:

- 1. Odłącz zasilanie kontrolera.
- Wyjmij kartę pamięci FLASH.
- Plik z oprogramowaniem które chcesz wgrać do kontrolera wgraj na kartę i zmień 3. mu nazwę na FW.BUF.
- Umieść kartę ponownie w kontrolerze.
- Załącz zasilanie kontrolera kontroler uruchomi automatycznie proces aktualizacji oprogramowania. W trakcie procesu wgrywania które zwykle trwa nie więcej niż 10s świeci LED 2 a LED 3 pulsuje.
- 6. Po ukończeniu wgrywania nowego programu kontroler usuwa plik FW.BUF i przechodzi do Trybu serwisowego (LED 3 zgaszony; LED2 zapalony).
- 7. Uruchom program RogerVDM i wykonaj Konfigurację niskopoziomową.
- 8. Kontroler jest gotowy do Konfiguracji wysokopoziomowej z programu VISO.

Uwaga: W czasie procesu wgrywania oprogramowania należy zagwarantować ciągłe i stabilne zasilanie modułu. Awaria w czasie aktualizacji oprogramowania modułu może skutkować koniecznością naprawy urządzenia w serwisie Roger.

KONFIGURACJA NISKOPOZIOMOWA

Procedura Konfiguracji Niskopoziomowej:

- 1. Odłącz zasilanie kontrolera.
- 2. Zewrzyj linie CLK i DTA.
- 3. Podłącz zasilanie kontrolera, wszystkie diody LED (od LED1 do LED8) zaczną pulsować.
- 4 Odczekaj co najmniej 5s.
- Rozewrzyj linie CLK i DTA, diody LED przestają pulsować, zaświeci się LED2. 5.
- W programie RogerVDM wybierz Urządzenie->Połącz. 6.
- Wskaż model urządzenia, wersję firmware, kanał komunikacyjny (Ethernet). 8. Wpisz adres IP kontrolera MC16 zdefiniowany w pliku IP.INI (fabryczny adres IP=192.168.0.213).
- 9. Wpisz hasło komunikacyjne (fabryczne hasło jest puste).
- 10. Kliknij Połącz, program nawiąże połączenie z kontrolerem i automatycznie przejdzie do zakładki Konfiguracja.
- 11. Ustaw adres IP (pole Adres IP kontrolera) oraz, stosownie do wymagań, pozostałe nastawy konfiguracyine.
- 12. Wybierz Narzędzia->Ustaw Klucz Komunikacyjny, zdefiniuj klucz komunikacyjny i kliknij Ustaw klucz, następnie kliknij Zamknij.
- 13. Kliknij przycisk Wyślij do urządzenia program prześle nowe ustawienia do kontrolera.
- 14. Opcjonalnie, zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie Zapisz do pliku...). W przyszłości, o ile zajdzie potrzeba możesz tego pliku użyć do odtworzenia ustawień wysłanych do kontrolera.
- 15. W programie RogerVDM wybierz: Urządzenie->Rozłącz.
- 16. Zrestartuj kontroler (wyłącz/włącz zasilanie).

ZASILANIE

Moduł MC16 wymaga zasilania z transformatora 230VAC/18VAC/40VA. Opcjonalnie, może on być zasilany z napięcia stałego 12V lub 24V. W przypadku zasilania z napięcia 12VDC moduł nie obsługuje akumulatora rezerwowego a zasilanie awaryjne musi być zabezpieczone przez zasilacz zewnętrzny.

+	
_	Zasilanie 12V DC lu

PODŁACZENIE URZĄDZEŃ DO MAGISTRALI RS485

Wszystkie moduły podłączane do magistrali RS485 muszą mieć niepowtarzalny adres z zakresu 100-115. Minusy wszystkich zasilaczy użytych do zasilania urządzeń podłączonych do magistrali RS485, wliczając to wbudowany zasilacz kontrolera, muszą być połączone przy pomocy osobnego przewodu o dowolnie małej średnicy i uziemionego w jednym punkcie.

DODATKI		
	ac dc ØØ	
BAT+	TML+ TML- AUX+ AUX- AC AC BAT-	
Rys. 3 \	Widok płyty MC1	
Nazwa	Opis	
NC1	Styk normaln przekaźnika R	
COM1	Styk wspólny	

ys. 3 Widok płyty MC16 Tabela 1: Opis zacisków			
lazwa	Opis	Nazwa	Opis
IC1	Styk normalnie zwarty przekaźnika REL1	IN5	Linia wejściowa IN5
COM1	Styk wspólny przekaźnika REL1	IN6	Linia wejściowa IN6
101	Styk normalnie otwarty przekaźnika REL1	GND	Potencjał odniesienia (masa)
IC2	Styk normalnie zwarty przekaźnika REL2	IN7	Linia wejściowa IN7
COM2	Styk wspólny przekaźnika REL2	IN8	Linia wejściowa IN8
102	Styk normalnie otwarty przekaźnika REL2	GND	Potencjał odniesienia (masa)
BAT+	Akumulator, plus	OUT1	Linia wyjściowa OUT1

Rys. 2 Sposób podłączenia zasilania napięciem DC.

BAT-	Akumulator, minus	OUT2	Linia wyjściowa OUT2
AC	Wejście zasilania AC	OUT3	Linia wyjściowa OUT3
AC	Wejście zasilania AC	OUT4	Linia wyjściowa OUT4
AUX-	Wyjście zasilające 12VDC/1A, minus	OUT5	Linia wyjściowa OUT5
AUX+	Wyjście zasilające 12VDC/1A, plus	OUT6	Linia wyjściowa OUT6
TML-	Wyjście zasilające 12VDC/0,2A, minus	GND	Potencjał odniesienia (masa)
TML+	Wyjście zasilające 12VDC/0,2A, plus	A1	Interfejs RS485-1, linia A
IN1	Linia wejściowa IN1	B1	Interfejs RS485-1, linia B
IN2	Linia wejściowa IN2	CLK	Interfejs RACS CLK/DTA, linia CLK
GND	Potencjał odniesienia (masa)	DTA	Interfejs RACS CLK/DTA, linia DTA
IN3	Linia wejściowa IN3	GND	Potencjał odniesienia (masa)
IN4	Linia wejściowa IN4	A2	Interfejs RS485-2, linia A
GND	Potencjał odniesienia (masa)	B2	Interfejs RS485-2, linia B

Tabela 2: Opis diod funkcyjnych stałych	
LED	Znaczenie
AC	Wskazuje obecność wejściowego napięcia zasilającego na zaciskach AC
DC	Wskazuje obecność wyjściowego napięcia zasilającego na zaciskach AUX/TML

Tabela 3: Opis funkcji LED1-8		
	Znaczenie w Trybie Normalnym	Znaczenie w Trybie Serwisowym
LED1	Tryb Normalny	Brak
LED2	Brak	Tryb Serwisowy
LED3	Błąd konfiguracji wysokopoziomowej	Błąd oprogramowania firmowego
LED4	Błąd zegara/kalendarza	Nieznany błąd
LED5	Ogólny błąd systemu	Błąd adresu IP
LED6	Błąd licencji	Błąd karty pamięci
LED7	Niski stan akumulatora	Błąd konfiguracji niskopoziomowej
LED8	Utracono komunikację z urządzeniem	Błąd bootloader'a
	RS485	

Tabela 4: Dane techniczne		
Napięcie zasilania	Nominalne 18VAC; dopuszczalne 17-22VAC	
	Nominalne 12VDC, dopuszczalne 10-15VDC	
	Nominalne 24VDC, dopuszczalne 22-26VDC	
Akumulator	13,8V/7Ah, prąd ładowania ok. 300mA	
Pobór prądu (średni)	100mA przy zasilaniu 18VAC (bez obciążenia wyjść AUX/TML)	
Wejścia	Osiem wejść parametrycznych (IN1-IN8) elektrycznie	
	połączone wewnętrznie z plusem zasilania przez rezystor 5,6 kΩ. Dla linii typu NO i NC próg wyzwolenia na poziomie ok.	
	3,5V	
Wyjścia	Dwa wyjścia przekaźnikowe z pojedynczymi stykami NO/NC,	
przekaźnikowe	obciążalność 30V/1,5A DC/AC	
Wyjścia	Osiem wyjść tranzystorowych typu otwarty kolektor,	
tranzystorowe	obciążalność 15V/150mA DC. Maks. całkowity prąd płynący	
	przez wyjścia w tym samym czasie 3A DC.	
Wyjścia zasilające	Dwa wyjścia zasilające: 12VDC/0.2A (TML) oraz 12VDC/1A	
	(AUX)	
Porty RS485	Dwa porty komunikacyjne RS485	
Port Ethernet	Port komunikacyjny 10BASE-T 10/100Mb	
Odległości	Do 1200m dla RS485	
	Do 150m dla RACS CLK/DTA	
Stopień ochrony	IP20	
Klasa środowiskowa	Klasa I, warunki wewnętrzne, temp. +5°C - +40°C, wilgotność	
(wg EN 50133-1)	względna: 1095% (bez kondensacji)	
Wymiary	72 x 175 x 30 mm	
WxSxG		
Waga	ok. 200g	
Certyfikaty	CE	

. Maksymalna odległość pomiędzy kontrolerem a dowolnym czytnikiem nie może prekroczyć 1200m. 2. Każdy czytnik musi posiadać indywidualny adres z zakresu 100..115

3. Wszystkie czytniki podłączone do magistrali RS485 muszą posiadać wspólny minus zasilania.

4. Do wykonania połączeń magistrali RS485 zalecana jest nieekranowana skrętka.

5. Z wyjątkiem pętli dozwolone są wszystkie inne topologie połączeń.

Rys. 4 Sposób podłączenia czytników i ekspanderów serii MCX/MCT.

Rys. 6 Topologia wejść parametrycznych.

rcdr192

 \mathbf{O}

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger Sp. J. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133 Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: biuro@roger.pl Web: www.roger.pl