# Roger Access Control System

# Instrukcja instalacji terminali MCT88M-IO

Oprogramowanie firmowe: 1.0.2.97 i wyższe

Wersia dokumentu: Rev. F

# CE

Niniejszy dokument zawiera minimum informacji wymaganych do skonfigurowania, podłączenia i zamontowania urządzenia. Pełny opis funkcjonalności oraz parametrów konfiguracyjnych danego urządzenia jest dostępny w jego instrukcji obsługi dostępnej na stronie www.roger.pl.

#### WSTEP

Terminal przeznaczony jest do pracy w systemie RACS 5 i pełni funkcję urządzenia podrzędnego względem kontrolera dostępu MC16, do którego podłączany jest za pośrednictwem magistrali RS485. Alternatywnie urządzenie może współpracować z kontrolerem wirtualnym przez sieć Ethernet (LAN) funkcjonując jako terminal PoS lub terminal kontroli wypożyczeń. Fabrycznie nowy terminal jest ustawiony do komunikacji RS485 i posiada adres ID=100 a jego pozostałe nastawy są skonfigurowane do wartości domyślnych. Przed bezpośrednim podłączeniem terminala do kontrolera dostępu MC16 należy nadać mu niepowtarzalny adres RS485 z zakresu 100-115. Programowanie pozostałych parametrów konfigurujących urządzenia jest opcjonalne i zależy do indywidualnych wymagań systemu. Konfigurowanie ustawień terminala z poziomu programu RogerVDM wymaga użycia interfejsu RUD-1.

## KONFIGURACJA Z POZIOMU ROGERVDM



Rys. 1 Podłączenia terminala do interfejsu w celu konfiguracji

Procedura programowania z poziomu programu RogerVDM:

- 1. Załóż zworkę na styki MEM (rys. 3)
- Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 1, a interfejs RUD-1
- do portu USB komputera. Terminal wyświetli na swoim ekranie napis CONFIG MODE i pomarańczowy LED SYSTEM zacznie pulsować. Uruchom program RogerVDM i wskaż urządzenie *MCT v1.x*, wersję firmware *v1.0*, kanał komunikacyjny *RS485* oraz port szeregowy pod którym 3. zainstalował się interfejs komunikacyjny RUD-1.
- Wybierz interfejs komunikacyjny RS485 i ustaw odpowiedni adres RS485 w zakresie 100-115 lub wybierz interfejs Ethernet i ustaw adres IP terminala. Stosowanie do indywidualnych wymagań ustaw pozostałe nastawy konfiguracvine.
- Kliknij przycisk Wyślij do urządzenia a program prześle nowe ustawienia do 5. urządzenia.
- Opcjonalnie zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie 6 Zapisz do pliku...).
- 7. Zdejmij zworkę ze styków MEM i odłącz urządzenie od interfejsu RUD-1.

Uwaga: Gdy port USB komputera nie zapewnia odpowiedniej wydajności prądowej dla RUD-1 to należy zasilić urządzenia za pomocą zasilacza zewnętrznego 12VDC o wydajności min. 200mA.

Uwaga: Podczas współpracy urządzenia z programem RogerVDM nie używaj klawiatury ani nie zbliżaj karty do czytnika.

## MANUALNA ZMIANA ADRESU

Procedura manualnej zmiany adresu ma na celu ustawienie nowego adresu urządzenia na magistrali RS485 z zachowaniem dotychczasowych nastaw konfiguracyjnych.

#### Procedura manualnej zmiany adresu:

- Usuń wszystkie połączenia z linii A i B. 1.
- Załóż zworkę na styki MEM (rys. 3).
- Wykonaj restart urządzenia (wyłącz/włącz zasilanie). Terminal wyświetli na swoim ekranie napis CONFIG MODE i pomarańczowy LED SYSTEM zacznie pulsować.

- 4. Wprowadź trzy cyfry określające adres RS485 w przedziale 100-115 za pomocą klawiatury.
- Odczekaj aż urządzenie zacznie wydawać ciągły sygnał dźwiękowy. Zdejmij zworkę ze styków MEM i wykonaj restart urządzenia. 6.

# PROCEDURA RESETU PAMIĘCI

Procedura resetu pamięci kasuje wszystkie dotychczasowe nastawy konfiguracyjne i przywraca ustawienia fabryczne urządzenia w tym adres ID=100.

#### Procedura resetu pamięci:

- Usuń wszystkie połaczenia z linii A i B. 1
- 2
- Załóż zworkę na styki MEM (rys. 3). Wykonaj restart urządzenia (wyłącz/włącz zasilanie). Terminal wyświetli na swoim ekranie napis CONFIG MODE i pomarańczowy LED SYSTEM zacznie 3. pulsować
- Naciśnij [\*] albo odczytaj 11-krotnie dowolną kartę zbliżeniową standardu MIFARÉ
- Odczekaj aż urządzenie zacznie wydawać ciągły sygnał dźwiękowy.
- 6 Zdejmij zworkę ze styków MEM i wykonaj restart urządzenia.

## AKTUALIZACJA OPROGRAMOWANIA

Nowe oprogramowanie firmowe można wgrać do urządzenia za pomocą wewnętrznej karty pamięci FLASH. Plik z aktualnym oprogramowaniem firmowym dostępny jest na stronie www.roger.pl.

Procedura aktualizacji oprogramowania:

- Odłacz zasilanie urzadzenia. 1.
- 2
- Naciśnij i wyjmij kartę pamięci z gniazda (rys. 3). Za pomocą czytnika kart pamięci skopiuj na kartę plik z oprogramowaniem 3. głównym (\*frg) zmieniając mu nazwę na FW.BUF oraz z oprogramowaniem dodatkowym (\* cyacd) odpowiedzialnym za klawiaturę i BLE zmieniając mu nazwę na KBDFW.CYA.
- Umieść kartę ponownie w urządzeniu.
- 5. Załącz zasilanie terminala i odczekaj aż urządzenie w pełni wystartuje. Na etapie wgrywania oprogramowania dodatkowego na wyświetlaczu widoczny bedzie postep warvwania.
- 6 Odłącz zasilanie gdy oprogramowanie dodatkowe KBD zostanie wgrane w 100%.
- Załącz zasilanie terminala i odczekaj aż urządzenie w pełni wystartuje. 7
- 8. Uruchom program RogerVDM i wykonaj konfigurację niskopoziomową.

Uwaga: W czasie procesu wgrywania oprogramowania należy zagwarantować ciągłe i stabilne zasilanie urządzenia. Awaria w czasie aktualizacji oprogramowania może skutkować koniecznością naprawy urządzenia w serwisie Roger.

#### DODATKI



Rys. 2 Sposób otwarcia obudowy terminala





Rys. 3 Lokalizacja styku serwisowego i karty pamięci

| Tabela 1. Opis zacisków |                                   |  |
|-------------------------|-----------------------------------|--|
| Nazwa                   | Opis                              |  |
| +12V                    | Zasilanie 12VDC                   |  |
| GND                     | Potencjał odniesienia (masa)      |  |
| A                       | Magistrala RS485, linia A         |  |
| В                       | Magistrala RS485, linia B         |  |
| COM                     | Zacisk wspólny przekaźnika REL    |  |
| NC                      | Zacisk rozwierany przekaźnika REL |  |
| NO                      | Zacisk zwierany przekaźnika REL   |  |
| IN1                     | Linia wejściowa IN1               |  |
| IN2                     | Linia wejściowa IN2               |  |
| IN3                     | Linia wejściowa IN3               |  |
| OUT1                    | Linia wyjściowa OUT1              |  |
| OUT2                    | Linia wyjściowa OUT2              |  |
| 1,2,3,4,5,6,7,8         | Zaciski portu Ethernet            |  |

| Tabela 2. Dane techniczne             |                                                                                                                                                                                                                                   |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Napięcie zasilania                    | Nominalne 12VDC, dopuszczalne 10-15VDC                                                                                                                                                                                            |  |  |
| Pobór prądu (średni)                  | ~110 mA                                                                                                                                                                                                                           |  |  |
| Wejścia                               | Trzy wejścia parametryczne (IN1IN3)<br>elektrycznie połączone wewnętrznie z plusem<br>zasilania przez rezystor 5,6 kΩ. Dla linii typu NO i<br>NC próg wyzwolenia na poziomie ok. 3,5V                                             |  |  |
| Wyjście przekaźnikowe                 | Wyjście przekaźnikowe REL1 z jednym<br>izolowanym stykiem NO/NC, maks. obciążenie<br>30V/1.5A                                                                                                                                     |  |  |
| Wyjścia tranzystorowe                 | Dwa wyjścia tranzystorowe (OUT1, OUT2) typu<br>otwarty kolektor, maks. obciążenie 15VDC/1A                                                                                                                                        |  |  |
| Ochrona antysabotażowa (TAMPER)       | Otwarcie obudowy raportowane metodą<br>programową do kontrolera dostępu                                                                                                                                                           |  |  |
| Metody identyfikacji                  | Karty ISO/IEC14443A MIFARE Ultralight, Classic,<br>Desfire EV1 i Plus<br>Urządzenia mobilne (Android, iOS) zgodne z NFC<br>Urządzenia mobilne (Android, iOS) zgodne z<br>Bluetooth Low Energy v4.1                                |  |  |
| Zasięg odczytu                        | Do 7 cm dla kart MIFARE i komunikacji NFC<br>Do 10 m dla BLE - zależy od warunków otoczenia<br>i modelu danego urządzenia mobilnego. Moc<br>sygnału radiowego terminala można zwiększać w<br>ramach konfiguracji niskopoziomowej. |  |  |
| Odległości                            | Do 1200 m pomiędzy kontrolerem i terminalem<br>(RS485)                                                                                                                                                                            |  |  |
| Stopień ochrony                       | IP41                                                                                                                                                                                                                              |  |  |
| Klasa środowiskowa<br>(wg EN 50133-1) | Klasa I, warunki wewnętrzne, temp. +5°C do<br>+40°C, wilgotność względna: 1095% (bez<br>kondensacji)                                                                                                                              |  |  |
| Wymiary W x S x G                     | 85 x 155,5 x 21,5 mm                                                                                                                                                                                                              |  |  |
| Waga                                  | 190g                                                                                                                                                                                                                              |  |  |
| Certyfikaty                           | CE                                                                                                                                                                                                                                |  |  |







Rys. 5 Podłączenie zamka, czujnika otwarcia drzwi i przycisku wyjścia do terminala typu MCTxx-IO



Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia może to spowodować negatywne skutki dla srodowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczymia się do ochrony zasobów naturalnych i jest typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger Sp. z o. o. sp. k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133 Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: biuro@roger.pl Web: www.roger.pl

